A cross-border community for researchers with openness, equality and inclusion

ABSTRACT LIBRARY

Enhancing Predictive Maintenance in Industrial IoT: Comparative Analysis of Machine Learning Models for Fault Detection and Performance Optimization

Publisher: IEEE

Authors: P Dhivagar, Hindusthan College

  • Favorite
  • Share:

Abstract:

The most recent advancements in the Industrial Internet of Things (IIoT) technologies, which enable industrial equipment data monitoring and collection in real-time, have allowed for the implementation of predictive maintenance techniques that enhance operational efficiency and reduce unscheduled downtimes. This research analyzes multiple models of machine learning (ML) including Random Forests, Support Vector Machine (SVM), XGBoost, and Long Short-Term Memory (LSTM) networks with the goal of optimizing fault detection and performance evaluation in the industry. Sensor data from critical machinery was processed to assess model precision, recall, F1-score, and overall degradation forecasting to measure detection accuracy. Findings demonstrate that while XGBoost performs reliably for fault classification, early anomaly detection is best facilitated by LSTM networks due to their ability to capture relevant underlying temporal structures associated with such detection. The results showcased the importance of tailored machine learning model selection towards specific industrial use cases and the role of intelligent analytics aimed at enhancing predictive maintenance integration within IIoT frameworks.

Keywords: Predictive Maintenance, Industrial Internet of Things (IIoT), Machine Learning Models, Fault Detection, Performance Optimization, Anomaly Detection,

Published in: 2024 Asian Conference on Communication and Networks (ASIANComNet)

Date of Publication: --

DOI: -

Publisher: IEEE

×

USS WeChat Official Account

USSsociety

Please scan the QR code to follow
the wechat official account.