A cross-border community for researchers with openness, equality and inclusion
A Learnable Distortion Correction Module for Modulation Recognition
ID:101 View protection:Participant Only Updated time:2025-12-23 13:12:17 Views:103 Online

Start Time:2025-12-30 15:15

Duration:15min

Session:[S1] Track 1: Mobile computing, communications, 5G and beyond [S1-2] Track 1: Mobile computing, communications, 5G and beyond

No file yet

Abstract
Automatic Modulation Classification (AMC) is a critical task in cognitive radio and electronic warfare, enabling the blind identification of a signal's modulation scheme at the receiver. A significant challenge to reliable AMC is the presence of channel-induced distortions, such as carrier frequency offset (CFO) and phase noise, which severely degrade classification accuracy, particularly in low Signal-to-Noise Ratio (SNR) environments. This paper proposes a novel, learnable Distortion Correction Module (CM) based on a deep neural network architecture. The CM is designed to be co-trained end-to-end with a Convolutional Neural Network (CNN) classifier, forming a CM+CNN system. The CM acts as a channel parameter estimator, dynamically correcting the distorted signal before it reaches the classifier. Unlike traditional methods, this approach is entirely data-driven and does not require explicit knowledge of the channel parameters for training, relying only on the modulation scheme label. Through comprehensive evaluation, the proposed CM+CNN system demonstrates a substantial improvement in AMC accuracy across various modulation types and channel conditions, establishing a more robust and reliable solution for non-cooperative communication systems. This work contributes to UN Sustainable Development Goal 9 (Industry, Innovation and Infrastructure) by improving the robustness and efficiency of intelligent wireless communication systems through data-driven distortion correction for reliable modulation recognition in challenging channel conditions.
 
Keywords
Automatic Modulation Classification (AMC), Deep Learning, Distortion Correction, Cognitive Radio, Convolutional Neural Networks (CNN).
Speaker
Rami Said
College of Medical Instruments Engineering Techniques, Al-Farahidi University

Post comments
Verification Code Change Another
All comments
Important Dates
  • Conference date

    12-29

    2025

    -

    12-31

    2025

  • 12-30 2025

    Presentation submission deadline

  • 02-10 2026

    Draft paper submission deadline

  • 02-10 2026

    Registration deadline

Sponsored By

United Societies of Science

Organized By

扎尔卡大学

Contact info
×

USS WeChat Official Account

USSsociety

Please scan the QR code to follow
the wechat official account.