A cross-border community for researchers with openness, equality and inclusion
EmberNet: An Augmented Depthwise Separable Convolution Network for Microcontrollers
ID:59 View protection:Participant Only Updated time:2025-12-18 10:16:22 Views:130 Online

Start Time:2025-12-29 17:30

Duration:15min

Session:[S3] Track 3: Privacy, Security for Networks [S3] Track 3: Privacy, Security for Networks

Abstract

Abstract—State-Of-The-Art Neural Networks are accurate but are hungry for compute and memory. For MCU (Microcontrollers), it usually has much less resources: 32KB RAM, 256KB Flash, no GPU. In turn, it requires Neural Network model must meet stringent requirements for energy efficiency, low latency, and robust inferencing. To address this challenge in the paper, I propose EmberNet, a micro-friendly Neural Network based on an Augmented Depthwise Separable Convolution Network[5] for compute-efficiency and much smaller parameters. I illustrate the application of the model with the public dataset[8] using denial-of-service(DoS), Fuzzy, Gear-spoofing, and spoofing-RPM attack types. With EmberNet’s tiny 514-parameter and model size 6.4KB, I am able to achieve 99.46% accuracy and 0.0085 false-negative rate across four attack types. In comparison, EmbernetNet is 1100+ times smaller than a 7MB Inception-ResNet baseline[1], 45 times smaller than specialized RGB-CNN[2]. To make these benchmark results production-viable and reproducible, a build pipeline using TVM (Tensor Virtual Machines), Zephyr Project, and QEMU (Quick EMUlator) has been established to enforce the reliability of the model.

Keywords
CAN bus,Depthwise Separable Convolution Network,GroupNorm,Global Adaptive Average Pool,Structural pruning,Intrusion Detection System,edge ai
Speaker
Claire Guo
Lynbrook High School

Post comments
Verification Code Change Another
All comments
Important Dates
  • Conference date

    12-29

    2025

    -

    12-31

    2025

  • 12-30 2025

    Presentation submission deadline

  • 02-10 2026

    Draft paper submission deadline

  • 02-10 2026

    Registration deadline

Sponsored By

United Societies of Science

Organized By

扎尔卡大学

Contact info
×

USS WeChat Official Account

USSsociety

Please scan the QR code to follow
the wechat official account.